How to Deploy High Density MTP/MPO Cables in 10G/40G/100G Migration?

Just as large enterprise settle into 10G networking, bandwidth intensive applications and big demands are forcing companies to adopt 40G or even 100G network speeds. To address the upgrading from 10G to 40G/100G more efficiently and effectively, high density MTP/MPO cables are a good solution. In this post, I’d like to introduce the deployment of MTP/MPO cables (MTP harness cable, MTP trunk cable and MTP conversion harness) in 10G/40G/100G migration.

10G to 40G Migration: 8-Fiber MTP Harness Cable

8-fiber MTP-LC harness cable is one commonly used solution to directly connect 10G device to 40G device. As the following image shows, the MTP harness cable is in conjunction with a QSFP+ port carrying 40GbE data rates, then breakouts into four LC duplex cables which will be plugged into four 10G SFP+ transceivers.


40G to 40G Connection
Solution 1: 12-Fiber MTP Trunk Cable

For 40G to 40G direct connection, 12-fiber MTP trunk cable is the first choice. In the following scenario, 12-fiber MTP trunk cables are needed to connect the 40G transceivers (four fibers transmit, four fibers receive, leaving four fibers unused), adapting to the QSFP+ ports on the two 40G switches.


Solution 2: 2×3 MTP Conversion Module

In this scenario, 2×3 MTP conversion module is used. For every two 12-fber MTP connectors in the backbone cable, you can create three 8-fiber links. There is an additional cost for the additional MTP connectivity, but that is offset by the cost savings from 100 percent fiber utilization in the structured cabling. The 2×3 conversion module must be used in pairs—one at each end of the link. As the following image shows, the eight live fibers from each of the three QSFP+ transceivers are transmitted through the trunks using the full 24 fibers. The second 2×3 module unpacks these fibers to connect to the 3 QSFP+ transceivers on the other end.


Solution 3: 2×3 MTP Conversion Harness

For those needing a direct connection with 100 percent fiber trunk utilization, 2×3 MTP conversion harness (two 12-fiber MTP connectors on one end going to three 8-fiber MTP connectors on the other end) is an alternative fanout solution available which has the same functionality as 2×3 conversion module. Connectivity of the conversion harness is identical to the 2×3 module, and they are interchangeable, but must be used in pairs—one (cable or module) at each end of the link.


10G to 100G Migration: 20-Fiber MTP Harness Cable

CFP is a very popular implementation when deploying 100G network. To achieve 10G to 100G migration, in this scenario, 20-fiber MTP MPO breakout cables will be used(ten fibers for transmit and ten fibers for receive, then breakout into ten duplex LC cables). Simply connect this cable to a CFP transceiver and the customer can access the 10 SFP+ individually transceiver pairs.

10G to 100G migration with mtp breakout cable

100G to 100G Connection: MTP Trunk Cable

For directly connecting switches with QSFP+ ports, 12-fiber MTP trunk cable can be used, while for connecting 100GBase-SR10 CFP equipped devices, 24-fiber MTP trunk cable will be deployed.



From the text above, we have introduced several 10G/40G/100G scenarios that use MTP/MPO cables for data transmission. MTP trunk cable is a common solution for device direct connection, MTP harness cable is used for easier upgrading to higher speed network, and MTP conversion harness can achieve 100% fibers utilization, saving costs. All the MTP/MPO cables that we mentioned can be purchased in FS.COM.

Publicerat av


I work in the marketing department in Fiberstore. Fiberstore company is a professional manufacturer & supplier of fiber optic cabling products. As the best OEM fiber optic cable manufacturer, Fiberstore provides a wide range of optical fiber cables with detailed specifications displayed for your convenient selecting. Per foot price of each fiber cable is flexible depending on the quantities of your order. All of our fiber cables come with a lifetime advance replacement warranty and are 100% functionally tested.