Wireless AP vs. Router: Make the Right Choice

Wireless access points (WAP or AP) and routers are often thought of as the same thing. In fact, a wireless access point is similar to a router but there are some differences. Technically, any router with Wi-Fi onboard can be called a wireless access point, but that’s not their only definition. For example, a router can be an access point, but an access point can’t be a router. This post will cover both wireless AP and router, explaining each of their roles and advanced features. Then you can decide which one is best suited for your wireless network.

tmp573128235110367234

What Is A Wireless Access Point(AP)?

An access point is a networking hardware appliance that can be used as either an independent device or a component of a router. A WAP performs two major functions in a network. First, it enables devices that don’t have inbuilt Wi-Fi connection to access a wireless network. Once you connect a WAP to a router (that don’t have an inbuilt WI-FI ability) with an Ethernet cable, it becomes a wireless device which will connect to your network. Secondly, WAP is used as a wireless range extender, increasing the coverage of your existing WI-FI network. If you connect your router to a wireless access point through an Ethernet cable, you will be able to increase the area of your Wi-Fi access.

What Is A Router?

A router acts as a gateway in a computer network by connecting various devices wirelessly. A wireless router is a basic router with an added feature on an inbuilt access point. It allows a wireless communication and sharing of data amongst devices and computers that are connected to a particular network. The wireless router achieves this by allocating IP addresses to the computers and devices. Additionally, a router helps these computers that are within the wireless network to share devices such as scanners and printers wirelessly.

Wireless AP vs. Router: What’s the Difference?
Appearance

Almost anyone who has an internet connection has a router nowadays. So I guess everyone is quite familiar with it. The commonly used router usually has antennas ranging from 1 to 4. And it has four more wired network ports compare to a wireless AP, except one WAN port for connecting upper network equipment, and the rest four LAN ports for connecting a computer with a wired network card in an intranet. Additionally, it has more indicators than wireless AP.

TP-Link-Launches-the-N750-Dual-Band-Gigabit-Router33

A simple wireless access point usually has a wired RJ45 network port, power interface, configuration port (USB port or through the web interface configuration) and several status indicators. Apart from the common configuration, a wireless access point can be designed into different types:

Ceiling-mount Wireless AP

Wall-mount Wireless AP

Outdoor Wireless AP

Application

A wireless AP is widely used in large enterprises, because large companies need a large number of wireless access node to achieve a large network coverage. And all access terminal belong to the same network, which is convenient for the company network administrator to realize network control and management.

A wireless router is generally used in homes and SOHO environments where the coverage is narrow and users account for a small part. Under such kind of circumstances, only one wireless AP is enough.

Connection Mode

A wireless AP can’t be connected to ADSLMODE, unless a switch or hub or router is used as a medium. While the wireless router is endowed with broadband dial-up function, you can directly connect to the ADSLMODEM and achieve dial-up Internet access.

Function

The function of wireless AP is to convert a wired network into a wireless network. To put it simply, wireless AP serves as a bridge between wireless networks and wired networks. Its signal range is spherical, so it is better to be placed in a higher point, which can increase network coverage. Wireless AP is a wireless switch, which is connected to a wired switch or router, and the wireless terminal and the original network belong to the same subnet.

A wireless router is a wireless AP with routing function, which is connected to ADSL broadband lines. Through the router function, an independent wireless home networking is built.

Wireless AP vs. Router: Which One should I Buy?

Typically, wireless routers are used in residential and small businesses, where all users can be supported by one combined AP and router. Wireless APs are used in larger businesses and venues, where many APs are required to provide service, for example, to cover a bigger area or to support thousands of users. In larger WLANs, it usually makes sense to have several APs feeding into a single, separate router.

Conclusion

In conclusion, if you want to build more reliable wireless network, you may need a wireless access point. If you just want a wireless network at home to cover only several people, the wireless router is enough. If you are looking for a good wireless AP supplier, FS. COM is a good choice. FS.COM provides several wireless access points with high performance to support resilient wireless access services for use in enterprise offices, schools, hospitals, hotels and more.

What Kind of Switches and Patch Cables Should I Choose for SFP Transceiver?

Gigabit Ethernet has supplanted Fast Ethernet in wired local networks and becomes ubiquitous throughout the world, serving as one of the most prevalent enterprise communication standard. The Gigabit Ethernet standard supports a maximum data rate of 1 gigabit per second (Gbps)(1000 Mbps), 10 times faster than Fast Ethernet, yet is compatible with existing Ethernet. To link your switches and routers to a Gigabit Ethernet network, you need a Gigabit Ethernet transceiver as a transmission medium. This article intends to introduce the most commonly used one—SFP transceivers.

sfp

What Is SFP Transceiver?

SFP, short for small form-factor pluggable is a compact, hot-pluggable transceiver used for both telecommunication and data communications applications. SFP transceiver can be regarded as the upgrade version of GBIC module. Unlike GBIC with SC fiber optic interface, SFP module is with LC interface and the main body size of SFP is only about half of GBIC so that it can save more space. SFP interfaces a network device mother board (for a router, switch, media converter or similar devices) to a fiber optic or copper networking cable. It is designed to support SONET, Gigabit Ethernet, Fibre Channel, and other communications standards.

Types & Applications of SFP transceivers

SFP transceivers are available with various transmitter and receiver types, which facilitates users to select the appropriate optical transceiver for different optical reach and optical fiber type (single-mode fiber or multimode fiber) required by different link. SFP transceiver modules can be divided into several different categories:

Types Transmission Medium Wavelength Distance
1000BASE-T SFP Twisted-pair cabling / 100 m
1000BASE-SX SFP Multimode fiber 770-860 nm OM1-275 m/OM2-550 m
1000BASE-LX/LH SFP SMF & MMF 1270-1355 nm MMF-550 m/SMF-5 km
1000BASE-ZX SFP Single mode fiber 1550 nm 70 km
1000BASE-EX SFP Single mode fiber 1310 nm 40 km
1000BASE-BX10 SFP Single mode fiber 1480-1500 nm downstream, 1260-1,360 nm upstream 10 km
CWDM and DWDM SFP Single optical fiber various wavelengths various maximum distances

SFP transceivers are found in Ethernet switches, routers, firewalls and network interface cards. Storage interface cards, also called HBAs or Fibre Channel storage switches, also make use of these modules. Because of their low cost, low profile, and ability to provide a connection to different types of optical fiber, SFP transceiver provides such equipment with enhanced flexibility.

FS.COM Compatible SFP Transceivers for Popular Switches

FS.COM offers a full range of SFP transceivers compatible with major brands, such as Cisco, Juniper, Arista, Brocade, HPE, etc. All of these cost-effective compatible SFPs have been strictly tested to make sure 100% compatibility. The table below listed a small part of compatible SFPs supported on major branded switches.

Brand Switch Series Model Port Description
Cisco Catalyst 6500 Series WS-SUP720-3BXL 2 SFP Port
VS-S720-10G-3C 4 SFP Port
WS-X6724-SFP 24 SFP Port
Nexus 9000 Series N9K-C9396PX 48 SFP Port
IE3010 Series IE-3010-24TC 2 SFP Port
ASR 9000 Series Router A9K-MPA-20X1GE 20 SFP Port
Juniper EX 4200 Series EX4200-24T 2 SFP Port
EX4200-48T 4 SFP Port
EX4200-24T-DC 2 SFP Port
MX480 Router MX480 Router 4 SFP Port
SRX Series SRX210 1 SFP Port (Option)
QFX 5100 QFX5100-48S 48 SFP Port
Arista 7500 Series DCS-7504 48 SFP Port (Option)
DCS-7508 48 SFP Port (Option)
7050SX Series 7050SX-64 48 SFP Port
7100 Series DCS-7124S 24 SFP Port
Brocade VDX 6720 BR-VDX6720-16-R 16 SFP Port
BR-VDX6720-24-F 24 SFP Port
BR-VDX6720-40-F 40 SFP Port
SX Series SX-424F 24 SFP Port
SX-FI12GM-4-PREM 12 SFP Port
Brocade BI-RX-8 NI-MLX-1Gx20-SFP 20 SFP Port
HPE ProCurve 5400zl Series J8697A 2 SFP Port
J9548A 144 SFP Port
FlexFabric 5800 Series JC101B 4 SFP Port
JG225B 6 SFP Port
5400R zl2 Series J9584A 24 SFP Port
StorageWorks edge 2/12 348406-B21 12 SFP Port

FS.COM Patch Cables for SFP Transceivers

FS.COM offers comprehensive fiber patch cables for common and special types of SFPs, including singlemode & multimode, simplex & duplex, UPC & APC, lengths from 1 meter to 30 meters in large stocks. We also provides Cat 5e patch cables for 10/100/1000BASE-T SFPs.

Fiber Mode Connector Jacket
9/125 SMF LC Duplex PVC/LSZH/OFNP
9/125 SMF LC Simplex PVC/LSZH
9/125 SMF SC Simplex PVC/LSZH
50/125 OM2 LC Duplex PVC/LSZH
62.5/125 OM1 LC Duplex PVC
Cat5e Patch Cables Max Distance Data Rate
Unshielded (UTP) 100m 1000Mbps
Shielded (FTP) 100m 1000Mbps

Summary

This article offers switch and fiber patch cabling solution for SFP transceivers. Besides the major brands mentioned above, we also provide SFP transceivers compatible with other brands, such as Dell, Extreme, H3C, Huawei, Intel, IBM, Netgear, Ciena, D-Link, Avago, and so on. As to special requirements, please contact Sales@fs.com for suggestion.

Proper Cabling Solutions for PoE Network

Ethernet cables

By running power and data transmission over a single Ethernet cable, PoE (Power over Ethernet) has found success across a variety of applications such as IP surveillance cameras, IP phones and wireless access points. However, without the right cabling and network design in place, PoE can encounter cable heating and connectivity issues that may adversely affect performance. So in this post, some cabling recommendations for PoE will be listed for your reference.

working principle of PoE switch

Issues Affect PoE Performance

Heat generation in cable bundles is one of the biggest issues that affect PoE performance. When power is added to balanced twisted-pair cabling, the copper conductors generate heat and temperatures rise. High temperatures will lead to higher insertion loss, and in turn shorter permissible cable lengths. It can also increase bit error rates, and create higher power costs due to more power dissipated in the cabling.

Cabling Recommendations for PoE

Some cabling recommendations for PoE are suggested to help lower cabling temperature.

Use Higher Category Cabling

Higher category-rated cable typically means larger gauge sizes, and as power currents increase, these larger conductors will perform better than smaller cable. Generally, higher category cabling will be necessary to minimize temperature increases while supporting PDs that require more power.

Reduce the Number of Cables per Bundle

If cables are bundled or closely grouped with other cables, cables near the center of the bundle have difficulty radiating heat out into the environment. Therefore, the cables in the middle of the bundle heat up more than those toward the outer layers of the bundle. Separating large cable bundles into smaller bundles or avoiding tight bundles will reduce temperature rise.

Design Pathways to Support Airflow

Enclosed conduit can contribute to heat issues. When possible, using ventilated cable trays would get better airflow. Open mesh cable trays and ladder racks will improve heat dissipation and create more opportunities for loosely grouping cables instead of tight bundling.

Cat 5e vs. Cat 6a: Which Is Better for PoE Cabling?

The type of cabling selected can make a big difference in terms of how heat inside the cable is managed, and how it impacts performance. Typically, Cat 5e and Cat 6a cable can be used to support PoE devices. But it’s better to use Cat 6a for PoE cabling.

With larger-gauge diameter, Cat 6a can reduce resistance and keep power waste to a minimum as it has a lower temperature increase compared to smaller-gauge Cat 5e. This better performance will provide additional flexibility, including larger bundle sizes, closed installation conditions and higher ambient temperatures. For instance, when comparing 23-gauge and 24-gauge cabling, there is a large variance in how power is handled. As much as 20% of the power through the cable can get “lost” in a 24-gauge Cat 5e cable, leading to inefficiency. In addition, less power is dissipated in a 23-gauge Cat 6a cable, which means that more of the power being transferred through the cable is actually being used, improving energy efficiency and lowering operating costs.

FS PoE Switches & Ethernet Cables Solution

FS offers fully managed PoE Gigabit switches, which delivers robust performance and intelligent switching for growing networks. Available with 8, 24, or 48 PoE Gigabit Ethernet ports, the model details of our PoE switches are listed below. Among them, the PS130-8 and PS400-24 are PoE switches, while PS650-48, PS250-8 and PS650-24 are PoE+ switches. Reliable & economical, our PoE switches are ideal for SME networks and can expand your network much more easily than ever.

FS PoE switches specification

Besides PoE, we also have various types of Ethernet cables including Cat 6a, Cat 6, Cat 5e and Cat 7 Ethernet patch cables. Most of them are in large stock and multiple cable colors are available. For more details, please visit www.fs.com.